Monochromatic trees in random tournaments

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monochromatic paths in random tournaments

We prove that, with high probability, any 2-edge-colouring of a random tournament on n vertices contains a monochromatic path of length Ω(n/ √ log n). This resolves a conjecture of Ben-Eliezer, Krivelevich and Sudakov and implies a nearly tight upper bound on the oriented size Ramsey number of a directed path.

متن کامل

Monochromatic paths and monochromatic sets of arcs in bipartite tournaments

We call the digraph D an m-coloured digraph if the arcs of D are coloured with m colours and all of them are used. A directed path is called monochromatic if all of its arcs are coloured alike. A set N of vertices of D is called a kernel by monochromatic paths if for every pair of vertices there is no monochromatic path between them and for every vertex v in V (D) \ N there is a monochromatic p...

متن کامل

Trees in tournaments

A digraph is said to be n-unavoidable if every tournament of order n contains it as a subgraph. Let f (n) be the smallest integer such that every oriented tree is f (n)-unavoidable. Sumner (see 7]) noted that f (n) 2n ? 2 and conjetured that equality holds. HH aggkvist and Thomason established the upper bounds f (n) 12n and f (n) (4 + o(1))n. Let g(k) be the smallest integer such that every ori...

متن کامل

Tournaments with kernels by monochromatic paths

Let D be a digraph, and C a (not necessarily directed) cycle in D; an obstruction of C is a vertex x of C such that the outdegree in C of x is 2, that is, δ C (x) = 2. We will denote by Ω(C) the number of obstructions of C and by lΩ(C) the Ω-length of C, which is defined by lΩ(C) = |V (C)| − |Ω(C)|. An Ω-pseudodiagonal of C is an arc in A(D) \ A(C) with both vertices in C and whose initial vert...

متن کامل

Branches in random recursive k-ary trees

In this paper, using generalized {polya} urn models we find the expected value of the size of a branch in recursive $k$-ary trees. We also find the expectation of the number of nodes of a given outdegree in a branch of such trees.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Combinatorics, Probability and Computing

سال: 2019

ISSN: 0963-5483,1469-2163

DOI: 10.1017/s0963548319000373